LEARNING EXCEL : DATA ANALYSIS

An Internship Project Report Submitted in Partial fulfillment of the requirements for the award of Degree of Bachelor of Science in Mathematics

Submitted by

A.Pavithradevi

Register No: 18BM7462

Under the guidance of

Mrs. D. Kavitha M.Sc., M.Phil.,

Assistant Professor

Department of Mathematics (Self Finance)

Sri G.V.G Visalakshi College for Women (Autonomous)

(Affiliated to Bharathiar University, Coimbatore)

Accredited at 'A+' Grade by NAAC (CGPA 3.27)

An ISO 9001:2015 Certified Instituion

Udumalpet-642 128

March 2021

CERTIFICATE

This is to certify that the internship project work entitled "LEARNING EXCEL: DATA ANALYSIS" is a bonafied record done by **A.PAVITHRADEVI** (18BM7462) submitted in partial fulfillment of the requirement for the award of the degree of Bachelor of Science in Mathematics at Sri G.V.G Visalakshi college for women (Autonomous),Udumalpet during the academic year 2018-2021.

Signature of the HOD

Signature of the staff-in-charge

Introduction

The internship training program was organized by "Skill India- eskillIndia E-learning aggregator from NSDC (National Skill Development Corporation). This is one of the E-Learning Content. This E skill India include many Knowledge Partners. One of the Knowledge Partner "LinkedIn" gave this Course. Author **Curt Frye** teaches about the foundation concepts including basic calculations such as mean, median, mode, variance and standard deviation and also provides how to calculate the covariance and correlation and utilize data distributions.

Digital Tools

Dr. Curt Frye gave training under the title LEARNING EXCEL : DATA ANALYSIS

- 1. Introduction about the power data analysis of using excel
- 2. To calculate mean, median and mode
- 3. To measure maximum and minimum
- 4. To find the Error and Squared error from the mean value
- 5. Analyze data using variance and standard deviation
- 6. Use of Normal distribution
- 7. Use of Poisson distribution
- 8. Use of Exponential distribution
- 9. To Measure Covariance
- 10.To Measure Correlation

Tools used for Learning Excel: Data Analysis

Introduction about the power of data analysis of using excel

- ✤ Returns the correct results about 85% of the time.
- ✤ Time saving
- ✤ Gather and organize the data effectively.
- ✤ Create formulas in excel.
- ✤ Create charts.

To calculate Mean, Median and Mode

- Mean formula
 - 1. =average(a2:a12)
 - 2. Where, a2:a12 is the column A entered data
 - 3. Finally, click on enter to get the Mean value from the column A from a2 to a12.
- ✤ Median formula
 - 1. =median(a2:a12)
 - 2. Where, a2:a12 is the column A entered data.
 - 3. Finally, click on enter to get the Median value from the column A from a2 to a12.
- ✤ Mode formula
 - 1. =mode.sngl(a2:a12)

Where, a2:a12 is the column A entered datas

Click enter to get mode.sngl value.

2. =mode.mult

Where, a2:a12 is the column A entered datas

Click ctrl+shift+enter to get mode.mult value.

🔎 eSkillIndia- eLearning aggregato 🗴 💶 Calculate mean and median 🐠 🗴 💶 The power of data analysis using 🗴 🕇 🕇 ٥ \times ← → C 🔒 linkedin.com/learning/learning-excel-data-analysis-2/calculate-mean-and-median-values **⇒ 8** : ☆ ណ Ш 8 ۲ Ξ in LEARNING Q Search for skills, subjects or software Start my free month My Learning EN Me 🔻 Home Solutions for: Business Higher Education Government Buy For My Team (\mathbf{x}) i∃ Contents 5 - % 9 12 - 21 El Merge & G Introduction \sim G D A С The power of data analysis using Д 1 Days in Transit Excel 2 23 Mean 29.4545 3 4 5 6 38 Д 28 What you should know Median 29 1m 34s 28 30 Mode mode 7 8 9 10 11 28 1. Foundational Concepts of Data 29 Analysis 27 0 27 Д Calculate mean and median values 28 6m 27s 12 37 13 Measure maximums, minimums, and Д Sheet1 (+) other data characteristics Overview C Q&A Notebook Transcript Analyze data using variance and Д standard deviation INSTRUCTOR **RELATED TO THIS COURSE** 6m 34s Curt Frye Rearning Groups · Show all Introducing the central limit theorem ۵ President of Technology and Society, m 32s ∧ j͡₂ № (͡ d) ENG 05-03-2021 0 \$ w 喝

Calculation of mean, median and mode:

To measure maximum and minimum

Minimum formula

- 1. =min(a2:a41)
- 2. Where, a2:a41 is the column A entered datas.
- Finally, click on ctrl+shift+↓ to get all the values in column A.
- 4. Then, click on enter to get the minimum value from the column A from a2 to a41.

✤ Maximum formula

- 1. =average(a2:a41)
- 2. Where, a2:a41 is the column A entered datas
- Finally, click on ctrl+shift+↓ to get all the values in column A.
- 4. Then, click on enter to get the minimum value from the column A from a2 to a41.

✤ Inclusive and exclusive values

Inclusive formula End with .inc

Exclusive formula end with .exc

- → C	rearring-e	excel-uata-analysis	-z/measu	ure-maximums-	minimu	ms-and-othe	er-uata-cha	acteristic	5					ਮ	0	, :
in LEARNING	:= Browse	Q Search for s	kills, subj	ects or software	2			ப் Home	My Learni	ng Me 🔻	EN V	Start	my free	month		
						S	olutions for		ess Higher	Education	Governm		Buy For N			
- ~	\bigcirc		File	Home Insert Pa		Formulas Data	Devices Man	MirMax -	Saved Tell me what you want t	a da		Curtifiye B	□ - □			
∃ Contents	(\mathbf{x})		(C)					Accounting			靈麗菌			e		
	4		Paste	3 8 I U · E ·		5 H H D D			· 네 관 관 Condition	i Format as Cell v Table - Styles -	insert Delete Form		Find & Idees			
/ Calculate mean and median values	D		Cipboa	nd G Font		Aligr	ment	S Numbe	e a f	Styles	Cells	Editin	g ideas	~		
6m 27s	м		AZ	• × ✓						6				*		
	-		1	A Order Value	В	C	D	E	F	G	н		J			
 Measure maximums, minimums, and other data characteristics 	Д		2	6,231	¢	Minimum	=min(A2									
5m 38s			3	6,885			MIN(number1.	sumber2], _)								
			4	9,637		Maximum										
Analyze data using variance and standard deviation	D		5	8,060		The second second										
6m 34s			6	7,265		Inclusive			Exclusive					-		
			8	5,629 1,861		Quartile 1			Quartile 1							
Introducing the central limit theorem			9	6,062		Quartile 2			Quartile 2							
3m 32s				elect to the n	evt no		ctrl 4	shift +								
Analyze a population using data	Д		3		ext no		cuit	Shirt T	quartile 3							
samples			12	6,286												
3m 55s			Point	Sheet1 (+)	6				1	•			inkod in lan	120%		
) Identify and minimize sources of error 2m 5s	Д			6	Over	view	Ē Q&	A	Note	book		ranscript				
) Chapter Quiz																
3 questions			INST	RUCTOR					RELATE	D TO THIS	COURSE					
				Curt Frye	2				928 10	arning Gro	ups · Shou	v all				_
os://www.linkedin.com/learning/learning-excel-da		2/	C			nology and S	a states			anning oro	aps show	v an		Give	e feedback	

To find the Error and Squared errors from the Mean value

> Error finding:

- Error for b4
- Formula: =a4-c1 and click enter.
- Where, c1 is the entered mean value (here the mean value taken as 5,482.60)
- Finally we get the "b4" error value for the order value 2,393 as 3,089.60

> Squared errors:

- Squared Error for "b4" is
- Formula : =b4^2 and click enter.
- Finally, the squared error is given as 9,545,628.16

Calculation of Error and Squared error:

→ C														8.	~	
in LEARNING	:= Browse	Q Searc	h for skills, s	subjects or softwa	re			Home My Learnin	g Me ▼	EN		rt my free r	nonth			
						Solutions	for:	Business Higher E	ducation	Gover	nment	Buy For M	y Team			
E Contents	(\mathbf{x})		-	ata Analysis	ngelagest formån Store do radi dog	Data Davre Ve						순 7,230	ិឮា	100,637	ŧ	
		Analyze	data usin					Arrented a Constant	Former an Unit of	Lent Velate	1000 0 - 2 10000 0 - 20	tà find à lices				
Calculate mean and median values	٦	•		Clipboard G Fon		Alignment		3 70 7 11 41 Fermatting *	Table - Styles - Styles	Cetts	- Ø - Hit	er - Select iting Ideas				
6m 27s				84 · · · · · · · · · · · · · · · · · · ·	fs ====================================								8	2,811 ac	tive	
Measure maximums, minimums, and	a			A	В	С	D	E	F	G	н	1				
other data characteristics	м				Mean	5,482.60							-			
5m 38s				2 3 Order Values	Error	Squared Error		Variance (population)			VAR.P					
				4 2,393	(3,089.60)			variance (population)			VAR.P					
Analyze data using variance and standard deviation	Д			5 5,403	()		<u>64</u>	Std Dev (population)			STDEV.P					
6m 34s				6 2,140		0										
	_			7 9,195 8 4,132				Variance (sample)			VAR.S					
Introducing the central limit theorem	Д			9 9.429				Std Dev (sample)			STDEV.S					
3m 32s				10 8,054												
Analyze a population using data	ជ	Play	100	11 3,150												
samples			_	12 5,447						-	_					
3m 55s) @ k	13 5.483 2:58/6	-24							1v	ात्त ४	් ද ද	0 -	-
Identify and minimize sources of error	D		r 🔍 v											\$ 7	"	1
2m 5s	n				Overview	E (28.4	Note	ook	_	Transcrip	*				
a					Overview		2004	L Noter	JOOK		manscrip					
Chapter Quiz 3 questions																
Juestions			11	NSTRUCTOR				RELATED	TO THIS CO	DURSI						
. Visualize Data	~			Curt	10			000 1	rning Group							
				Curt Fry	/e			ALE Lea	rning Group	os · 5	how all		Sec. 1	ve feed	The second second	

Analyze data using variance and standard deviation

Variance:

- Variance population Formula: =average(c4:c13)
- Click enter to get variance in f3 from c4 to c13 (we calculate for squared errors values) we get 6,393,943.44
- And to use formula: =var.p(a4:a14) taken from order values we get as 6,393,943.44
- Thus, we get the result as the variation is as same as taken from squared error and order values

Standard deviation:

- Standard deviation Formula: =sqrt(f3)
- Click enter to get standard deviation in f5 from squaring f3 (we calculate from squared values) we get as 2,529.02
- And to use formula: =stdev.p(a4:a14) taken from order values we get as 2,529.02
- Thus, we get the result as the standard deviation is as same as taken from squared error and order values

	C Search for Browse	skills, subject	s or software	2			☆ ロ Home My Learnir	ag Me ▼	EN		art my free n	nonth	
					Solutions	for:	Business Higher I	Education G	iover	nment	Buy For My	/ Team	
	\frown	- Calendaria (💷 🖥 5- e	10 a	Data Besiew Vi		Verience - Ercel JP Tell me what you want to		N	CuttFiye	Share P Comments	×	
Contents	(\mathbf{x})	File H	-	ige Layout Formulas		er H	General •				AT D 4	e	
		Paste	BIU- E-	and the second second	E E E Merge & C	enter -	e or ++ a Conditional	Format as Cell Inse			Z V > 7 Sort & Find & Ideas		
		Clipboard G	Font	6	Alignment	6		Table - Styles Styles	Cells	- 0-	Filter - Select - Editing Ideas	~	
Calculate mean and median values		110	• I × V	fe .								*	
бт 27s			A	В	С	D	E	F	G	н	1	-	
Measure maximums, minimums, and		1	N	lean	5,482.60								
other data characteristics	×	2										-	
5m 38s		3 Ord	ler Values	Error	Squared Error		Variance (population)	6,395,943.44		VAR.P	6,395,943.44		
		4	2,393	(3,089.60)							0		
Analyze data using variance and		5	5,403 2,140	(79.60)	6,336.16 11,172,974.76		Std Dev (population)	2,529.02		STDEV.P	2,529.02		
standard deviation	10203	7	9,195	3,712.40	13,781,913.76		Variance (sample)	7,106,603.82		VAR.S	7,106,603.82		
6m 34s		8	4,132	(1,350.60)			variance (sample)	7,100,003.82		VALS	7,100,003.02		
Intenducing the central limit theorem		9	9,429	3,946.40	15,574,072.96		Std Dev (sample)	2,665.82		STDEV.S	2,665.82		
Introducing the central limit theorem		10	8,054	2,571.40	6,612,097.96								
3m 32s		11	3,150	(2,332.60)	5,441,022.76								
Analyze a population using data	۵.	12	5,447	(35.60)	1,267.36								
samples		13	5,483	0.40	0.16								
3m 55s			Sheet1 🛞					4			Makadin hear	1	
		Ready									Uhikadin hanan	163%	
Identify and minimize sources of error 2m 5s	Д		6	Overview	Ē,	Q&A	Notel Notel	book	Ξ	Transcr	ript		
Chapter Quiz 3 questions		INSTRU	CTOR				RELATED	D TO THIS CO	URS	E			
			Curt Frye				. 0.	arning Groups					

> To calculate **variance sample** use formula:

=sum(c4:c13)/(count(c4:c13)-1

- ➤ This value changes from variance (variance population) because of -1
- > We get same ans using =var.s(a4:a13) click enter.
- To calculate standard deviation sample use formula: =sqrt(f3) and same value using formula as =stdev.s(a4:a13)
- ➢ Click enter.

Data Distributions

• Use of Normal distribution:

NORM.DIST function

Syntax:

NORM.DIST(x, mean, standard_ dev, cumulative)

The NORM.DIST function syntax has the following arguments:

- X the value for which you want the distribution.
- Mean the arithmetic mean of the distribution.
- **Standard_dev** the standard deviation of the distribution.
- **Cumulative** Required. A logical value that determines the form of the function. If cumulative is TRUE, NORM.DIST returns the cumulative distribution function; if FALSE, it returns the probability density function.

Remarks:

- If mean or standard_dev is non-numeric, NORM.DIST returns the #VALUE! error value.
- If standard_dev \leq 0, NORM.DIST returns the #NUM! error value.
- If mean = 0, standard_dev = 1, and cumulative = TRUE, NORM.DIST returns the standard normal distribution, NORM.S.DIST.
- The equation for the normal density function (cumulative = FALSE) is:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

• When cumulative = TRUE, the formula is the integral from negative infinity to x of the given formula.

Normal distribution:

eSkillIndia- eLearning aggregato X	Use the no	ormal distribution 🔌	× +						-	- 0	×
\leftrightarrow \rightarrow C \blacksquare linkedin.com/learning/	/learning-	excel-data-analysis/	use-the-normal-distr	ibution					0~ ☆	= 6	3 E
in LEARNING	:= Browse	Q Search for ski	ills, subjects or softw	are		Home My Lea		Start my fre	e month		
					Solutions for:	Business High	ner Education Gove	ernment Buy For	r My Team		
i∃ Contents	×		Parts 423 * 8 I ⊻ + 1 Clipboard 5 F 12 * 1 ×	ont ra	E 🗄 🗟 🔛 Merge & Center - Alignment 15	\$ - % 9 1 4 Con Number 5	nditional Format as Cell Insert Del natting - Table - Styles	ete Format Ø Sort & Find & Ide Filter ~ Select ~ Its Editing Ide	2785		^
✓ Chapter Quiz		•	A A	B C	D Probability of exactly 8		F G 71% of values below	H I J			
4 questions			2 Standard Deviation		Probability of 84 or les		85% of values below				
3. Test a Hypothesis	~		5 3	6 2.9633E-06 8 5.1877E-06 10 8.922E-06	Norm	al Curve µ	ι = 100, σ = 1	5 0			
 Formulate a hypothesis 2m 37s 	Д		8 4 9 4	12 1.5074E-05 14 2.5019E-05 16 4.0793E-05 18 6.5342E-05	0.025	/	$ \land $				
 Interpret the results of your analysis 1m 53s 	Д		11 5 12 5 13 5	0 0.00010282 2 0.00015894 4 0.00024136	0.015 0.01 0.005						
 Consider the limits of hypothesis testing 1m 18s 	Д		15 5 16 6 17 6	6 0.00036007 8 0.0005277 0 0.00075973 2 0.00107452 (+)	0 20	40 60 80	100 120 140 1	50 180			
✓ Chapter Quiz 2 questions			Ready	Overview	C Q&A	D N		Transcript	+ 130%		
4. Utilize Data Distributions	>			Q. Find in t	ranscript		In this vid	eo 🔻			
5. Measure Covariance and Correlation	>										
6. Perform Bayesian Analysis	>	•	Use the normal - [Instructor] Th		ion that you are	most likely to u	use during your an	alysis is the normal	Give	feedbac	k 🖵
Type here to search		0	0 9	۵ 🔒				^ @ ⊜ ₩ <i>(</i>	(小) ENG 1	20:50 10-03-2021	5

• The normal distribution is defined by two values. The first is the mean(average) and the second is the standard deviation. The standard deviation is the amount of spread in your data.

Procedure:

- To create calculations for a variety of values. And those will appear in the chart that you see on the worksheet. Starting in cell B4, we calculate the probability of the value 36. So, in cell B4, =NORM.DIST. This takes a look at the probability of a specific value occurring within the normal distribution.
- This function requires four arguments. The first is the value in cell A4, as 36 and then a comma. The next is the mean, and in cell B1 then a comma. The standard deviation is in B2.And finally indicate whether the cumulative distribution function, that is, any value up

to, and including a specific value X. Or whether the point probability using the probability mass function. That is, the probability that a specific value will occur.

- To use the probability mass function, so highlight false, press tab.
- Click enter, the first value will display. And it doesn't even show on the chart. Now, copy this formula down for all of the cells in Column A that contain values. So click cell B4, double click the fill handle. Double click, and there you see the familiar shape of the normal curve.
- The average, or the peak occurs right at 100, and you can see that the values spread out and that is a function of the standard deviation of 15.
- To calculate the specific value, of say, 84 occurring, then click in cell E1 enter the formula for normal distribution in excel then click enter. We get the value about 0.15%
- Follow the same process to go for the probably of 84 or less, we have TRUE for the cumulative probability. Type right parenthesis and press Tab
- We get a value of 84 or less will happen about 14.3% of the time.
- To find the cutoff, where 71% of values will occur below a specific point. In this case, let's do 71%, we see that 71% of values would be below 108.3.
- The same thing for 85, we see that 85% of the values will occur below 115.5. Note that 14% of values will occur between 115.5 and 108.3. And if you look at the chart again, you will see that the normal curve is higher, has higher probability toward the middle, around 100, and that even at 115. So if we wanted to see the value, where we had 95 or even 98% of values, we'd be much further over to the right.

Use of Poisson distribution:

POISSON.DIST function

Returns the Poisson distribution. A common application of the Poisson distribution is predicting the number of events over a specific time, such as the number of cars arriving at a toll plaza in 1 minute.

Syntax:

POISSON.DIST(x,mean,cumulative)

The POISSON.DIST function syntax has the following arguments:

- X the number of events.
- Mean the expected numeric value.
- **Cumulative** a logical value that determines the form of the probability distribution returned. If cumulative is TRUE, POISSON.DIST returns the cumulative Poisson probability that the number of random events occurring will be between zero and x inclusive; if FALSE, it returns the Poisson probability mass function that the number of events occurring will be exactly x.

Remarks:

- If x is not an integer, it is truncated.
- If x or mean is nonnumeric, POISSON.DIST returns the #VALUE! error value.
- If x < 0, POISSON.DIST returns the #NUM! error value.
- If mean < 0, POISSON.DIST returns the #NUM! error value.
- POISSON.DIST is calculated as follows.

If cumulative = FALSE:

Poisson =
$$\frac{e^{-\lambda}\lambda^x}{x!}$$

If cumulative = TRUE:

Composition =
$$\sum_{k=0}^{x} \frac{e^{-\lambda} \lambda^{x}}{k!}$$

Example:

Copy the example data in the following table, and paste it in cell A1 of a new Excel worksheet. For formulas to show results, select them, press F2, and then press Enter. If you need to, you can adjust the column widths to see all the data.

Data	Description	
2	Number of events	
5	Expected mean	
Formula	Description	Result
=POISSON.DIST(A2,A3,TRUE)	Cumulative Poisson probability with the arguments specified in A2 and A3.	0.124652
=POISSON.DIST(A2,A3,FALSE)	Poisson probability mass function with the arguments specified in A2 and A3.	0.084224

Use of exponential function:

EXPON.DIST function

Returns the exponential distribution. Use EXPON.DIST to model the time between events, such as how long an automated bank teller takes to deliver cash. For example, you can use EXPON.DIST to determine the probability that the process takes at most 1 minute.

Syntax:

EXPON.DIST(x,lambda,cumulative)

The EXPON.DIST function syntax has the following arguments:

- X the value of the function.
- Lambda the parameter value.
- **Cumulative** a logical value that indicates which form of the exponential function to provide. If cumulative is TRUE, EXPON.DIST returns the cumulative distribution function; if FALSE, it returns the probability density function.

Remarks:

- If x or lambda is nonnumeric, EXPON.DIST returns the #VALUE! error value.
- If x < 0, EXPON.DIST returns the #NUM! error value.
- If lambda ≤ 0 , EXPON.DIST returns the #NUM! error value.
- The equation for the probability density function is:

$$f(x;\lambda) = \lambda e^{-\lambda x}$$

• The equation for the cumulative distribution function is:

$$f(x;\lambda) = 1 - e^{-\lambda x}$$

Example:

Copy the example data in the following table, and paste it in cell A1 of a new Excel worksheet. For formulas to show results, select them, press F2, and then press Enter. If you need to, you can adjust the column widths to see all the data.

Data	Description	
0.2	Value of the function	
10	Parameter value	
Formula	Description	Result
=EXPON.DIST(A2,A3,TRUE)	Cumulative exponential distribution function	0.86466472
=EXPON.DIST(0.2,10,FALSE)	Probability exponential distribution function	1.35335283

To Measure Covariance:

I. Covariance formula = $\frac{\sum (x - \bar{x})(y - \bar{y})}{n}$

Procedure:

- For each data point, find its deviation from the Mean.
- Multiply the deviation for each pairs of data points.
- Find the sum of all these values and divide by the number of data pairs.

Interpreting covariance value:

- The data sets don't vary together.
- **Positive** The data sets tend to move in the same directions.

Negative - The data sets tend to move in the Opposite directions.

Calculate Covariance between Two Columns of data:

- Labeled column one and column two. Covariance is the average of all of the differences or variances for pairs of data points.
- > Type in =(a2-average(a2:a11))*(b2-average(b2:b11))

Press enter. We get the average of column A and column B

- To find the average of all those covariance. And that is exactly the same as dividing by the number of data pairs.
- Type =AVERAGE(c2:c11) and click enter we get the covariance as -0.48,whivh is very small.
- > To find between two columns type =covariance.p(a2:a11,b2:b11)
- > Click enter we get the value as -0.48.
- And also type =covariance.s(a2:a11,b2:b11) then click enter we get,
 -0.533333 a difference covariant function value. The difference is due to subtracting one from the number of data pairs.

Single Covariance:

← → C	learning-	excel-data-a	nalysis-2/c	alculate	-covaria	nce-betv	veen-two-co	olumns-of-data							☆	ΞJ	0
in LEARNING	:= Browse	Q Search	n for skills,	subject	s or soft	ware			ப் Home	My Learnin	g Me 🗸	€N ▼	Start	my free	month		
								Solutions for:	Busines	s Higher E	ducation	Governme	ent I	Buy For N	ly Team		
i∃ Contents	×			û.	iome Insert		ut Formulas A* A* $\equiv \equiv \equiv$		SingleCoveriance Help <i>J</i> D Tell General	me what you want to		.	Σ· 27	Comments			
Chapter Quiz 1 question	ŕ			Paste 3	8 1 ⊻ -	🖽 + 🖄 + Font	▲ - ≡ ≡ ≡	🖽 📰 🔛 Merge & Center - Alignment	\$ - % 9 Number	Formatting -	Format as Cell Table - Styles - Styles	Insert Delete Formu Celts	t Sort & Filter - S Editing	Find & Ideas Select ~ Ideas	~		
5. Measure Covariance and Correlation	~			54 1 Col	A umn1 C	В	C I Covariance	DE		F G	Н	I	J	K	*		
 Visualize what covariance means 2m 38s 	Д			2 3 4	1 4 7	3 2 1	4.68 1.38 -7.92	Covariance Fund	tion -0.48	$\frac{\sum (x-\bar{x})(x-\bar{x})(x-\bar{x})(x-\bar{x})(x-\bar{x})(x-\bar{x})}{n}$	$(y-\bar{y})$						
 Calculate covariance between two columns of data 4m 21s 	Д			5 6 7 8	2 3 5	4 9 6 8	0.78 -7.52 0.68 12.58			0							
 Calculate covariance among multiple pairs of columns 5m 16s 	Д			9 10 11	1 6 9	4 4 2	1.08 -0.42 -10.12										
 Visualize what correlation means 4m 42s 	Д			12 13	Sheet1		-0.48				1			Radin	-		
 Calculate correlation between two columns of data 2m 33s 	Д		2	Ready		 0	verview	E Q&A		Notel	book		anscript		* 1957%		
 Calculate correlation among multiple pairs of columns 4m 32s 	Д					Q	Find in tra	inscript			In t	his video 🧃			Ciuc	feedb	ack

Calculate covariance between multiple pairs of columns:

Here for example we took about 4 columns

To find the covariance between

Column 1 and column 1	=COVARIANCE.S(A2:A11,A2:A11)
Column 2 and column 1	=COVARIANCE.S(B2:B11,A2:A11)
Column 3 and column 1	=COVARIANCE.S(C2:C11,A2:A11)
Column 4 and column 1	=COVARIANCE.S(D2:D11,A2:A11)

Multiple Covariance:

in LEARNING	:= Browse	Q Search for sk	ills, subje	ects or sof	tware				ப் Home	My Learning	(Me ▼	EN V	Start m	iy free i	month	
							Solutio	ns for:	Business	Higher Ed	ucation	Governme	ent Bu	iy For M	ly Team	
	\sim		Cipboan	1 6	Fent	G	Alignment		Number	Formatting = 1	able - Styles -	Cells	Filter - Sele	ct ~ Ideas	~	
Contents	(×))	G2	- 1 -	V 6 1	COVARIANCE.S(\$	4\$2:\$4\$11,42:411								-	
				A	в	с	D	E	F	G	Н	I.	J	к	1	
1 question		^	1	Column1	Column2	Column3	Column4			Column1	Column2	Column3	Column4			
		6 - E	2	1	3	100	70		Column1	8.26667	-0.53333	16.5333	4.22222			
. Measure Covariance and Correlation	~		3	4	2		71		Column2	-0.53333		-8.17778	1.61111			
			4	7	1	108	72		Column3			60.8444	and the second se			
Visualize what covariance means	_		5	2	4	90	73		Column4	4.22222	1.61111	-1.55556	9.16667			
2m 38s	D		6	3	9		74									
2111 303			8	5	6		75					0			-	
Calculate covariance between two	Д		8	8	8	100	76					~				
columns of data			10	6	4		78									
4m 21s			11	9	2		79									
	-		12	,	-	110	15									
Calculate covariance among multiple pairs of columns	A		13												-	
5m 16s			Reads	Sheet1	÷					() ()	Count 14 - Even 1		u e Una	sellin)en m	and a	
			ready.							-						 1
Visualize what correlation means 4m 42s	Д				<u>∎</u> 0 [,]	verview	ſĒ	Q&A	Ļ	Notebo	ok	= Tr	anscript			
Calculate correlation between two	Д					Find in tr					In the	is video 🦷				
columns of data 2m 33s					L	Find In th	anscript				in th	is video				
Calculate correlation among multiple pairs of columns	Д		Calcu	late cov	ariance a	among m	ultiple p	airs of o	columns							

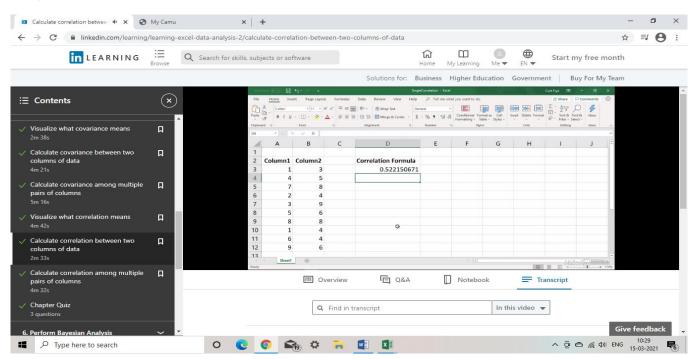
Drag the column to get the covariance in the balance columns respectively.

Measure Correlation:

II. Correlation formula =
$$\frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}$$

Procedure:

- For each data point, find its deviation from the Mean.
- Multiply the deviation for each pairs of data points.
- Find the sum of all these values and divide by the number of terms


Interpreting correlated value:

0	-	The data that is completely correlated
$0 > x \ge 1$	-	The data that is Positively correlated.
$-1 \le x < 0$	-	The data that is Negatively correlated.

Calculate Correlation between Two Columns of data:

- The more samples you have, the lower correlation value you need for your result to be significant.
- ➤ Take two columns like column 1 and column 2
- To calculate the correlation in excel, using correl function type
 =correl(a3:a12,b3:b12)
- \blacktriangleright Press enter, we get the correlation values for the column 1 and column 2
- Using correlation two-tailed significant formula table we can find the percent of significant of the correlation values.

Single correlation:

Two tailed correlation table:

in LEARNING	:= Browse	Q Search for skills, subject	cts or software					earning Me		Start my free n	nonth	
					Solu	utions for: B	usiness Hig	her Educatio	on Governme	ent Buy For My	/ Team	
∃ Contents	(\mathbf{x})		Corre	Jatio	nla	okun	table	(+)	-taile	d)		
/ Visualize what covariance means	۵	*	Corre	latio		οκαρ	lable		-taile	u)		
2m 38s				N	0.1	0.05	0.02	0.01	0.001			
/ Calculate covariance between two	Д			5	.80	.88	.93	.96	.99			
columns of data 4m 21s				6	.73	.81	.88	.92	.97			
				7	.67	.75	.83	.87	.95			
 Calculate covariance among multiple pairs of columns 	Д			8	.62	.71	.79	.83	.93			
5m 16s			5	9	.58	.67	.75	.80	.90	_		
 Visualize what correlation means 	۵		1	10	.55	.63	.71	.77	.87			
4m 42s				15	.44	.51	.59	.64	.76	_		
/ Calculate correlation between two	Д			20	.38	.44	.52	.56	.68			
columns of data 2m 33s			;	30	.31	.36	.42	.46	.57			
										<u>Utilized in</u> term	10.	
 Calculate correlation among multiple pairs of columns 4m 32s 	Д		6	Overview		ତ୍ର Q&A		Notebook	= Ti	ranscript		
/ Chapter Quiz 3 questions			[Q Find in	transcrip	t		I	n this video 🔹	~		

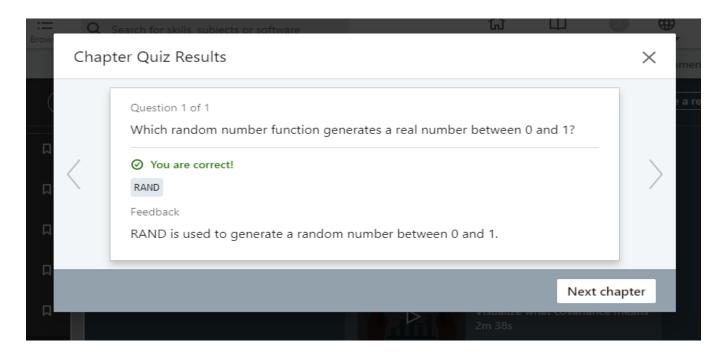
We took 10 values and 0.52 as correlation, for the first column the value for significance is .55. So what that means is that my value of .52 is almost significant at the 90% level, but in fact, it is not. If I'd had 15 samples, then my value of 0.52 would be significant at both the 90%, or 0.1 and 95%, .51 levels.

Calculate correlation between multiple pairs of columns:

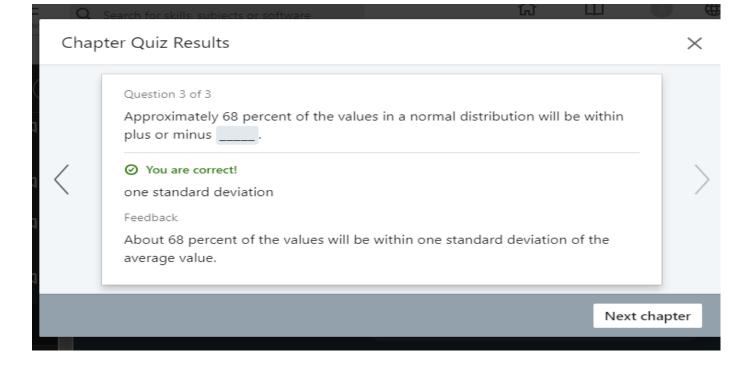
Here for example we took about 4 columns

To find the correlation between

Column 1 and column 1	=CORREL(A2:A11,A2:A11)
Column 2 and column 1	=CORREL(B2:B11,A2:A11)
Column 3 and column 1	=CORREL(C2:C11,A2:A11)
Column 4 and column 1	=CORREL(D2:D11,A2:A11)


And drag the formula for other respective columns.

Multiple correlation:


					M	ultipleCorrelations - Excel			Curt Fry	• 183 -	
File	Home Inse	rt Page Layout	Formulas D	lata Review V	iew He	Ip 🔎 Tell me what y	ou want to do		6	Share Come	nents
Paste			Commit Commit Commit Commit			General • \$ - % • % - 8 - 8 - 6 Number 5	Conditional Format as ormatting - Table -	Cell Insert D Styles	elete Format	Ž∑ ♀ Sort & Find & Filter × Select ×	dees dees
GS	- E ×		ORREL(\$4\$2:54511							NO. OVICE 11	
	А	В	с	D	E	F	G	н	1	J	1
1	Column1	Column2	Column3	Column4						-	
2	1	3	100	70		Correla	tion Forr	nulas			
3	4	2	104	71							
4	7	1	108	72			Column1	Column2	Column3	Column4	
5	2	4	90	73		Column1	1	-0.07062	0.737199	0.485032	
6	3	9	94	74		Column2	-0.07062	1	-0.39912	0.202579	
7	5	6	103	75		Column3	0.737199	-0.39912	1	-0.06587	
8	8	8	100	76		Column4	0.485032	0.202579	-0.06587	1	
9	1	4	85	77							<u>.</u>
10	6	4	98	78				0			
11	9	2	110	79							

We finaly get the correlation values for multiple columns.

Quiz

Q	Search for skills, subjects or software	L C	\blacksquare
Chap	ter Quiz Results		\times
	Question 1 of 3 If the covariance value is, it means the data sets tend to move in the same direction. ② You are correct! positive Feedback A positive covariance means that the data sets move in the same direction	-	\rangle
		Next chap	oter

Q	Search for skills, subjects or software		
Chapter Quiz Results			
<	Question 2 of 3 Which formula will return the correlation coefficient between data in cell A1:A5 and B1:B5? You are correct! =CORREL(A1:A5,B1:B5) Feedback This formula correlates the ranges between A1:A5 and B1:B5.	S	>
		Next chapter	

CONCLUSION

The internship was a useful experience. It helped to gain new knowledge and skills. It provides a path to achieve several of our learning goals. I have learned many shortcut formulae in Excel using data.